Course Type	Course Code	Name of Course	L	Т	Р	Credit
DP	NCEC545	Computational Laboratory in Hydraulics		0	3	1.5

Course Objective

The course aims at imparting knowledge on computational aspect of Water Resources Engineering

Learning Outcomes

Upon successful completion of this course, the students should be able to:

- Learn the basics of programming to apply in water resources problems.
- Learn to do the analysis of steady and unsteady flood routings.
- Learn to estimate bed load and suspended load in alluvial rivers.
- Learn to estimate reservoir sedimentation.

Unit No.	Topics to be Covered	Contact Hours	Learning Outcome		
1	Basics of Matlab/Python/Fortran	6	Able to get basic programing skill.		
2	Steady state flood routing analysis	6	Learn to estimate flood discharge.		
3	Incipient motion analysis	3	Able to calculate incipient flow discharge, depth and velocity.		
4	Computation and prediction of bed load in alluvial rivers	3	Able to estimate bed load discharge in alluvial river.		
5	Problem on computation and prediction of suspended load in alluvial rivers	3	Able to estimate bed load discharge in alluvial river.		
6	Prediction of reservoir sedimentation	3	Able to estimate reservoir sediment load		
8	Numerical solution of Saint Vennant equation using Matlab/Python/Fortran Unsteady flood routing Demonstration of HEC-RAS/TUFLOW etc.	12	Learn to write program in finite volume/finite difference/finite element method to solve unsteady flow problem. Learn basic of hydraulic modelling software.		

Unit No.	Topics to be Covered	Contact Hours	Learning Outcome
9	Design of various river training work such as embankment, spurs, porcupine etc	6	Learn to design river training work.
	Total Contact Hours	42	

Text Books:

- 1. Wu, W. (2007). Computational river dynamics. Crc Press.
- 2. Garde, R. J., & Raju, K. R. (2000). *Mechanics of sediment transportation and alluvial stream problems*. Taylor & Francis.

Reference Books:

- 1. Subramanya K. (2023), Engineering hydrology, Tata MacGraw Hill.
- 2. Pratap R. (2002), Getting started with Matlab, Oxford University Press.